Microwave-Assisted Sintering of Al–ZrO2 Nano-Composites

نویسندگان

  • M. Rajabi
  • M. M. Khodai
  • N. Askari
چکیده

Abstract In this project, nano-ZrO2 particles were dispersed in aluminum powder by a Y-shape mixer. The particle size of ZrO2 powder was < 40 nm and the amount of ZrO2 reinforcement varies from 3 to 15%.The mixed powders were compacted .Subsequently the compacted discs were sintered both in the microwave oven and in the conventional muffle furnace .Using microwave –assisted sintering method led to the reduction of sintering time to 15 minutes. Micro-structural studies of the nano-composites indicated that there is relatively uniform distribution of the reinforcement in the matrix. Aluminum metal matrix nano-composites( AMMNCs) samples were characterized by micro -hardness measurements, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDAX). Mechanical properties reveal that the presence of nano-ZrO2 particles has improved significantly the strength. The optimum amount of ZrO2 reinforcement has been determined to be 6%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with ...

متن کامل

Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics

An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...

متن کامل

Synthesis of Aluminum- CNTs Composites Using Double-Pressing Double-Sintering Method (DPDS)

Metal matrix composite (MMC) is engineered combination of the metal (matrix) and hard particle (reinforcement) to get tailored properties. MMCs are either in use or prototyping for the space shuttle, commercial airliners, electronic substrates, automobiles, golf clubs, and a variety of other applications.In this study, carbon nanotubes (CNTs) reinforced aluminum MMCs were synthesized by DPDS fo...

متن کامل

Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties

Aluminum metal matrix composites (AMMCs) are light-weight materials having wide-spread use in the automobile and aerospace industries due to their attractive physical and mechanical properties. The promising mechanical properties of AMMCs are ascribed to the size and distribution of the reinforcement, as well as to the grain size of the matrix. Microwave rapid sintering involves internal heatin...

متن کامل

Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

STATEMENT OF PROBLEM The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. PURPOSE The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014